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ground state or excited state conformer or (b) a single, 
highly reactive conformer are less compelling from exami­
nation of molecular models and the observed stereospecifi-
city of the rearrangement. Instead, the spin inversion may 
occur on the same single energy barrier surface which leads 
to product similar to that postulated for radiationless decay 
of excited benzene.19 
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Polar Effects in Radical Reactions. IL. Nucleophilic 
Character of the Undecyl Radical1 

Sir: 

Substituent effects on radical reactions are well 
known.2~9 In particular, Hammett p values have been mea­

sured for a variety of radicals in their attack on substituted 
toluenes (eq I).8 '9 These effects have been ascribed to the 

R- + CH3-C6H4X —* RH + -CH2-C6H4X (1) 

resonance stabilization of the transition state by structures 
such as II and III. According to this model, those radicals 
for which form II is more important would exhibit electro-

[R-H-CH2Ar *-+ R": ITCH2Ar •<-»- R+H": CH2Ar] (2) 

I II III 

philic character, while those for which structure III is more 
significant would be nucleophilic. The absolute magnitude 
of the polar effect in either case would be dependent upon 
the reactivity of the particular radical. 

Recently, an alternative rationalization of the data was 
proposed,10 one in which partial charge separation in the 
transition state is considered to be unimportant. It was pos­
tulated that p merely reflects differences in the bond disso­
ciation energies of the benzylic hydrogens in the substituted 
toluenes and that the magnitude of p is a measure of the 
sensitivity of the abstracting radical to those differences. 
Unlike the other model, this treatment leads to the predic­
tion that radicals are limited to negative (or zero) p values. 
As before, the size of p would be dependent upon radical re­
activity. 

A key test of the two models was provided by Pryor, 
Davis, and Stanley in their study of the tert- butyl radical. ' ' 
A p value of 0.99 was found; this was the first positive p 
value reported for hydrogen abstraction from toluenes. 

We have studied the 1-undecyl radical and here report 
the second positive p value observed for hydrogen abstrac­
tion from toluenes. This result provides additional support 
for the argument that radical reactions are susceptible to 
polar influences. 

The undecyl radicals (R-) were generated by thermolysis 
at 80° of «-lauroyl peroxide (LP) in a mixture of a toluene 
(QH) and carbon tetrachloride.12" The equations for the 
reactions are as follows 

LP —* R-, RH, and other products (3) 

R- + QH —• RH + Q- (4) 

R- + CCl4 —*• RCl + CCl3- (5) 

Kinetic analysis of eq 3-5 leads to eq 6. Some RH is pro­
duced even when the peroxide is allowed to decompose in 

[RH] - [RH]n kn [QH] 
[RCl] fecl [CCl4] w 

neat carbon tetrachloride. The concentration of RH was 
corrected for this material, designated [RHJo. The & H / & C I 
values given in Table I were obtained from the slope of a 
plot of ([RH] - [RH]0)/[RC1] vs. [QH]/[CCI4] .1 3 A 
Hammett op plot of the relative k\\ values (see Figure 1) 
gives p = 0.45 ± 0.07 (r = 0.9214).15 

A basic assumption in this derivation is that the only 
sources of RH and RCl are the reactions in eq 3-5.1 6 It has 
been observed that a chain sequence (eq 7 and 8) can occur 
in the CCU system.12d If the chain length is high, these 
reactions could produce appreciable levels of potential hy­
drogen and chlorine donors. We studied the CCl4-toluene 

CCl3- + Q H —• CHCl3 + Q- (7) 

Q- + CCl4 —>- QCl + CCl3' (8) 
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Figure 1. A Hammett plot of relative &H values (eq 4) for the 1-unde-
cyl radical vs. a substituent constants. The numbers correspond to the 
entries in Table I. 

Table I. Values of ks/kci for Substituted Toluenes toward 
the 1-Undecyl Radical at 80° 

No. QH kslkc No. QH kslkc 

1 
2 
3 
4 
5 

p-Xylene 
Mesitylene 
m-Xylene 
Toluene 
p-Chlorotoluene 

0.023« 
0.039» 
0.021» 
0.011 
0.018 

6 
7 
8 
9 

10 

m-Fluorotoluene 
m-Chlorotoluene 
m-Bromotoluene 
m-Tolunitrile 
m-Nitrotoluene 

0.021 
0.023 
0.017 
0.019 
0.028 

" The values plotted in Figure 1 for the xylenes were statistically 
corrected by a factor of 2; the value for mesitylene was corrected 
by a factor of 3. 

system in detail to determine the importance of this chain. 
The trichloromethyl radicals react readily to produce chlo­
roform, but the chain is evidently broken in the second 
step.17 Even in the absence of this chain sequence, a number 
of species (chloroform, bibenzyl, docosane, etc.) are pro­
duced during reaction. Examination of the reactivity and 
concentration of each showed that only in the case of chlo­
roform was reactivity sufficiently high to overcome the very 
low concentrations of these products; none of the other 
products contributed more than a fraction of a per cent to 
RH or RCl. 

Although its reactivity toward chlorine abstraction by the 
1-undecyl radical is quite low, chloroform has a relative &H 
value of about 30 compared to toluene. The contribution of 
chloroform to RH production in the kinetic runs, although 
much higher than that of the other products, was no more 
than ~ 2 % for [LP] = 0.01 M, the concentration used in the 
runs from which relative k\\ values were obtained. 

Addition of alkyl radicals to aromatic rings occurs readi­
ly,18 and it might be suggested that undecane is produced 
via a sequence in which undecyl radicals abstract hydrogen 
from the resulting cyclohexadienyl radicals or from nonrad­
ical products derived from these radicals. Thermolysis of 
LP in benzene produces appreciable amounts of undecyl-
benzene; the corresponding decomposition in toluene pro­
duces bibenzyl as the major product along with a small 
amount of undecyltoluene. However, in carbon tetrachlo-
ride-QH solutions the yield of the addition products is less 
than 1% of the total of RH and RCl, even for [QH]/[CC14] 
ratios as high as 15.19 

A test for ring involvement in RH formation was made 
by determining kH/ka values for benzene and substituted 
benzenes. These compounds all had approximately the same 
reactivity, which amounted to no more than 1 or 2% of that 
for toluene. This result indicates that the ring contribution 
to the reactivity of the toluenes is negligible. 

Another potential interference is "back-biting" by the 1-
undecyl radical, followed by abstraction of H or Cl by the 
resulting secondary radical. These reactions can be ruled 
out since only terminally substituted chloroundecane was 
found. Another source of RH might be reaction of R- with 
peroxide. However, this process can be neglected for [LP] 
= 0.01 M. 12d'e 
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Polar Effects in Radical Reactions. III. A Positive p for 
the Reaction of Undecyl Radicals with Substituted 
Toluenes1 

Sir: 

Hydrogen abstraction, the ubiquitous process all radicals 
undergo, is the most useful model for studying factors 
which affect the reactivity of radicals.2"4 Although the 
bond dissociation energies (BDE) of the bonds broken and 
formed in the reaction are the most important factors con-
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